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Abstract

Diametrically opposed views of the effectiveness of the United States Endangered Species Act (ESA) co-exist more than

30 years after the Act’s creation. The evidence marshaled to date for and against the ESA suffers from a problem common

in analyses of biodiversity protection measures: the absence of a well-chosen control group. We demonstrate how matching

methods can be used to select such a control group and thereby estimate how species listed under the ESA would have

fared had they not been listed. Our results show that listing a species under the ESA is, on average, detrimental to species

recovery if not combined with substantial government funds. In contrast, listed species with such funding tend to improve.

Our analysis offers not only new insights into a controversial debate, but also a methodology to guide conservation

scientists in evaluating the effectiveness of society’s responses to biodiversity loss.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Endangered Species Act (ESA) is the most important piece of biodiversity legislation in the United
States, but its effectiveness is hotly debated [6,34,37]. Supporters call the ESA the ‘‘crown jewel’’ of the
nation’s environmental legislation and an absolutely essential tool for protecting biodiversity. Opponents
claim that the ESA imposes unreasonable costs on society while delivering few benefits. Such ambiguity exists
more than 30 years after the Act’s creation because the ESA was never designed to be evaluated, and a
complex set of biological and political factors affects its implementation. The non-randomized nature of the
ESA makes measuring its effect on species recovery difficult. As we will demonstrate, recent efforts have relied
on a set of identifying assumptions that are likely to be flawed. This paper uses matching estimators and the
most complete set of covariates employed to date in order to analyze the effect of the ESA on vertebrate
species.
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As a starting point for our analysis, we study the ESA’s species listing process. As in Metrick and Weitzman
[24], we find that non-scientific variables have strong effects on the probability of listing. By dividing listed
species into cohorts, we then show that a 1982 reform to listing guidelines had the desired effect of
concentrating the listing process on scientific considerations. These changes over time generate bias in the two
most recent published analyses of the effects of the ESA, both of which use duration of listing to identify
treatment effects [20,40]. In contrast, our use of matching estimators allows us to select counterfactual species
that share charismatic, political and scientific characteristics with listed species. These methods offer a flexible
way to control for the complex and shifting set of characteristics that determine selection.

Using different matching estimators, we compare species recovery between listed and unlisted species. This
approach makes substantial improvements on efforts to identify the effects of the ESA. First, the approach
has an intuitive simplicity that makes the resulting estimates transparent. Second, matching offers a semi-
parametric way of comparing listed and unlisted species, thereby providing substantial flexibility in the choice
of specification. Third, our expanded set of covariates incorporates variables on environmental voting records
for politicians representing a species’ habitat, and so our counterfactuals include the politics of the listing
process in a novel way.

We measure impacts of two related treatments: the effects of listing under the ESA and the effects of
expenditures to species-specific recovery plans. The overall effect of listing under the ESA is insignificant, but
point estimates are consistently negative. In contrast, listing and funding together are strongly effective,
indicating that focused and well-funded recovery efforts can work. However, in line with theoretical
predictions [4,16,27], we find that species that are listed with little or no funding experience worse outcomes
than the comparison group.

Our estimators are non-experimental, and so will contain bias if the listing or funding processes are
determined by variables that are unobservable to us. Because matching permits a great deal of flexibility in
defining how the counterfactual is formed, we compare different ways of using the observable data and find
the estimated impacts to be robust. Our conclusions are also robust to alternative measures of species
recovery. As a final robustness check, we use Rosenbaum bounds to measure how strong an unobserved
variable’s effect on selection would have to be in order to undermine our conclusions. The results indicate that
the estimated negative effect of listing without funding is robust to the presence of unobserved heterogeneity,
while the positive effect of listing with funding is more sensitive to such heterogeneity.

Understanding the efficacy of the ESA is a crucial step in efforts to protect North American biodiversity
and to improve our understanding of species-specific environmental regulations. Our results indicate that
success can be achieved when the ESA is combined with substantial species-specific spending, but listing in the
absence of any funding appears to have adverse consequences for species recovery. This implies that using
scarce conservation funding in the contentious process of listing a species may be less effective than using this
funding to promote recovery directly. We conclude by offering hypotheses for further testing and by
describing experimental and quasi-experimental methods with which to test these hypotheses.

2. The controversy over the ESA

We attempt to answer the question, ‘‘Are listed terrestrial and freshwater vertebrates better off than if they
had not been listed?’’ Working against the ESA [4,43] are the Act’s species-level rather than ecosystem-level
focus, vague or contradictory legislative rulings, interest group pressures that warp listing decisions, and
landowner actions that preemptively harm species and their habitat in order to avoid regulatory burdens. As
evidence against the Act’s effectiveness, critics cite the paucity of delisted species and of recovering species as
defined by the US Fish and Wildlife Service (FWS) [13,21]. Furthermore, there is anecdotal [14,21,38],
theoretical [16,27], and empirical [19,22,45] evidence that the Act encourages landowners to preemptively
harm species and their habitat.

Working in favor of the ESA are the Act’s strong regulatory powers (particularly Sections 7 and 9) and the
recovery funds allocated by Congress annually. Evidence assembled in favor of the Act’s effectiveness include
arguments that the ESA has prevented extinctions [26,32,39], that the more years a species has been listed, the
more likely the species would be declared to be recovering by the FWS [20,28,40,41], and that there is a
positive correlation between government funding and reported FWS status [20,25].
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All of the published evidence marshaled to date for and against the ESA has a common problem: the
absence of a well-chosen counterfactual. For example, consider one of the more sophisticated analyses to date.
Taylor et al. [40] use logistic regression to examine the effect of the number of years listed on the likelihood
that a species has been declared to be recovering or declining by the FWS in the 1990s. They find that the
longer a species was listed, the more likely it was to be improving and the less likely it was to be declining.
Although this analysis makes great improvements over previous arguments for and against the act, it still
suffers from two important shortcomings.

The first, and less serious, is the use of FWS measures of species status as the outcome variable. The FWS
measures of species status have been criticized as too subjective [26] and, given they are not constructed using
transparent criteria, may be manipulated to achieve agency objectives.1

A more important shortcoming is the use of a flawed counterfactual. The sample consists of only
listed species, and impact is identified by comparing outcomes across the duration of listing. Similarly,
Male and Bean [20] identify impacts of the ESA off of duration of listing. For this counterfactual to be
valid, the listing process must be the same over time. However, there is substantial evidence that the listing
process has in fact changed over time (see Section 4.1). Evaluating the direction of the bias is not
straightforward.2
3. Data and methodology

Our outcome variable is ‘‘change in endangerment status from 1993 to 2004’’. We use national
endangerment scores from NatureServe, which is the most comprehensive measure of species endangerment
for the set of listed and unlisted vertebrates. Based on the Natural Heritage Methodology, NatureServe’s
system assigns an endangerment score to each species on a scale of 0 (extinct) to 5 (not endangered). Each of
the scores has a well-defined meaning and a serious effort is made to apply the scores consistently. We obtain
1993 scores from the DEMES database [5] and 2004 scores from NatureServe.

We limit our study to native endangered terrestrial and freshwater vertebrates that have full species status
and are present in one or more of the 50 states. We exclude species located outside of the 50 states because
(a) the FWS has little or no control over the protection of these species and (b) creating a counterfactual for
these species is more difficult given data limitations in foreign locations. We exclude plants because data on
their endangerment status over time are not available for a large set of species. We exclude marine mammals
because many are listed and managed by the National Marine Fisheries Service, not the FWS. We exclude
subspecies for three reasons: (a) an exhaustive list of subspecies in the United States does not exist; (b) our
biological database (NatureServe), which is the only exhaustive database of all US vertebrate full species, only
tracks ‘‘selected’’ unlisted sub-species; and (c) the concept of a ‘‘subspecies’’ is controversial in the biological
community. In the FWS literature, full species are supposed to be afforded higher priority than subspecies. We
also exclude exotic species because their protection is not a conservation objective, and we drop species that
were listed after 1993 because we wish to construct a counterfactual using only species unlisted through 2004.
We include only endangered species (i.e., with 1993 scores of less than 4) and exclude any species that had
scores indicating they were extinct or potentially extinct in 1993. Our sample consists of 135 listed species and
295 unlisted species.

The goal of program evaluation is to construct a proper counterfactual. In particular, we are interested in
the average treatment effect on the treated (ATT), which is what a listed species’ change in status would have
been had it not been listed.3 If listing is allocated randomly across species, we can estimate the counterfactual
1Since at least 1994, the FWS has attempted to measure the correlation between the length of time that a species has been listed and its

status measure in an attempt to show that the ESA is successful.
2One unpublished study uses unlisted species to construct the counterfactual [17]. However, the paper has several limitations: the

authors estimate changes over only a 4-year period, they include the outcome at the end of the period as an explanatory variable, and they

compare listed species with all unlisted species, including species that are not endangered. These problems, combined with their small

number of covariates, the dramatic differences on observable characteristics that affect outcomes between listed and unlisted species, and

the highly parametric estimator (ordered probit), likely create bias.
3Because the intent of the ESA is precisely to list only those species that are endangered, the Average Treatment Effect, which would be

the impact of listing the average species, is not of interest.
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Table 1

1993 scores for listed and unlisted species

1993 NS score Definition Unlisted species Listed species

Number % Number %

1 Critically imperiled in range 35 11.9 77 57.0

1.5 10 3.4 0 0.0

2 Imperiled in range 63 21.4 40 29.6

2.5 10 3.4 3 2.2

3 Vulnerable in range 162 54.9 14 10.4

3.5 15 5.1 1 0.7

Total 295 100 135 100
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simply by using the status of unlisted species because the expected status in the absence of the ESA is identical
for listed and unlisted species. However, decisions to list species under the ESA are determined by observable
characteristics of the species and their circumstances.4 Thus listed and unlisted species, on average, differ in
characteristics that may also affect status changes after listing (i.e., propensity to recover or decline). In the
presence of such potential bias, the methods of matching provide one way to assess the effect of listing under
the ESA.

Matching works by, ex post, identifying a comparison group that is ‘‘very similar’’ to the treatment group
with only one key difference: the comparison group did not participate in the program of interest [30,31].
Matching mimics random assignment through the ex post construction of a control group. If the researcher
can select observable characteristics so that any two species with the same value for these characteristics will
display homogenous responses to the treatment, then the treatment effect can be measured without bias.
Measuring the average treatment effect on the treated without bias requires that, given a vector of covariates,
the non-treated outcomes are what the treated outcomes would have been had they not been treated. This
‘‘conditional independence assumption’’ requires that selection into treatment occurs only on observable
characteristics. Hence an unbiased estimator requires that we have included all of the determinants of the
political selection problem. Arguably one can satisfy this requirement in the case of the ESA because the
species themselves exert no idiosyncratic influence, and so the problem is only one of eligibility and not one of
self-selection.

In our analysis (Section 4.2), we use a variety of covariate and propensity score matching estimators.
We assess the robustness of our results through ‘‘quality control’’ measures, including imposing common
support, using calipers and forcing exact matching on important covariates. Based on narrative and empirical
evidence presented in the next section, we match listed and unlisted species using covariates on taxonomy and
size, 1993 NatureServe endangerment status, the amount of scientific knowledge and interest in a species
(as proxied by scientific publications), and the historical environmental preferences of the citizens and
legislators from the states in which the species are found (as proxied by more than two decades of Senate and
Congressional voting scores from the League of Conservation Voters, or LCV). Further details on these
covariates and their sources, as well as summary statistics and other covariates considered, can be found in
Appendix A.

One potential concern is that the listing process has been a perfect policy instrument that has listed all
endangered species and thus there is no control group for very endangered, listed species. Table 1 shows how
the distribution of 1993 NatureServe scores differs across treatment status. Although the listed species within
the sample are more likely to be endangered than are the unlisted, it is clear by inspection that there is a
common support (i.e., overlap at all levels).
4For more complete discussions of the ESA and its history, see [34,36,44].
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4. Analysis

4.1. The listing process

The nature of the selection process is a central issue in any analysis of a non-randomized intervention. In the
late 1970s, many believed that listing decisions were often driven more by politics and preferences than by
science [9]. In 1979, the ESA was amended to include a requirement that the FWS perform a formal review,
which includes communication with ‘‘experts in the field,’’ to determine whether sufficient ‘‘scientific and
biological data’’ exist to justify a listing proposal. In the 1982 amendments, Congress required that listing
decisions be made ‘‘solely’’ on the basis of the best available scientific and commercial information. Thus
listing decisions were to be made based on scientific (biological) criteria without reference to the taxonomic
preferences of FWS staff and the public, without pressure from politicians, and without consideration of
economic costs (see discussion in Refs. [4,9]). It is an empirical question, however, whether this amendment
removed the influence of preferences and politics given FWS employee preferences for mammals and birds5

and given Congress’s control over the FWS budget.
To confirm the narrative evidence that the determinants of the selection process are varied and have

changed over time, we conduct an empirical analysis. Because the date of ESA listing is not observed in the
control species, analysis of changes in the listing determinants over time is not easily performed through
interactions. Instead, we divide the enlistees under the ESA into four roughly equally sized cohorts. The
cohorts are designated by the years of listing: 1967, 1968–1982, and the post-FWS guideline cohorts of
1983–1988 and 1989–1993. If the guidelines were successful in de-politicizing the process, we should see
political and charismatic characteristics becoming less important over time.

For the cohort of species that were listed under the ESA during each of the four periods, the relevant
counterfactual is formed by similar species that were not listed during that period. The control species for the
first cohort listed therefore consist of all other species. As we move through successive cohorts, we remove
from the analysis those species that have already been listed. We explain the binary outcome listed/not listed
using a linear probability model with heteroskedasticity-robust standard errors.

We define a set of political explanatory variables that includes the average League of Conservation Voter
scores for House and Senate representation (up to the end of each cohort), and the average annual number of
pro-environment and pro-land-use congressional representatives. The vector of scientific controls comprises
the average number of journal citations in the years up to the end of the cohort, the 1993 NatureServe score,
and dummies for being from a very small genus and for being a monotype. We also define a set of ‘charisma’

variables that are the dummies for being a mammal or bird, and the log length of the species (see Appendix A
for more details on all of the variables used).

In Table 2, we report F-statistics of the hypothesis that the political, scientific and charisma controls are
each jointly equal to zero. While the scientific variables remain strongly significant in every cohort, the
influence of the political variables diminishes over time and is entirely absent in the selection process by 1983.
The charisma variables, while seeing a brief resurgence in the 1983–1989 cohort, also become insignificant in
the final cohort. We thus conclude that the FWS guidelines were successful in reducing the influence of non-
scientific criteria on the listing process.6

The fact that the listing process is based on observable characteristics is important because these same
characteristics are also likely to affect the ability of a species to recover. For example, larger animals and
higher taxonomic classes tend to require larger habitat areas and reproduce more slowly. They are also more
likely to be seen as ‘‘worthy’’ of sacrifices by the general population to secure their recovery. Thus the
5Metrick and Weitzman [24] found larger animals from higher forms of life (mammal, birds) were more likely to be listed. They note that

larger species and higher life forms are likely to be "charismatic," and thus enjoy stronger political support than others. Dawson and

Shogren [7] argue that this correlation could result from time invariant characteristics such as a well-developed scientific foundation or

historical game use associated with these taxonomic groups. However, a survey of employee preferences in the FWS Office of Endangered

Species also found that employees ranked mammals and birds above fish, amphibians and reptiles [4, p. 8].
6These changes in the selection process provide a shift in the rule that assigns species to the treatment and the control, and so it is

tempting to try to use them as instruments. These changes, however, are likely to be endogenous both to the species up for consideration at

a moment in time and to broader changes in environmental preferences, thus violating the exclusion restriction.
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Table 2

Probability of being listed, by cohort

Cohort # Obs. Political Scientific Charisma

1967 430 362 (0.0065) 15.46 (0.0000) 14.65 (0.0000)

1968–1982 388 1.93 (0.1041) 9.92 (0.0000) 1.43 (0.2328)

1983–1989 351 1.49 (0.2042) 6.95 (0.0000) 2.84 (0.0379)

1989–1993 318 0.29 (0.8868) 4.28 (0.0022) 0.94 (0.4239)

F-statistics (P-values in parentheses).

Political variables: average LCV scores for House and Senate delegations; average number of pro-environment and pro-land use

representatives (see Appendix A for details).

Scientific variables: 1993 NatureServe score; average # of citations; dummies for small genus and monotypic species.

Charisma variables: log of species length; dummies for birds and mammals.
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construction of a counterfactual in the evaluation of the ESA must take into account selection on these
observable characteristics. Matching methods control for selection on observables and allow one to easily
confirm that the matched species share a common support with the treated species.

4.2. Impact estimates

We consider three treatments: (a) being listed under the ESA between 1973 and 1993; (b) being listed and
receiving ‘‘substantial’’ federal and state funds for recovery between 1989 and 1993; and (c) being listed but
not receiving ‘‘substantial’’ federal and state funds for recovery between 1989 and 1993. For the latter two
treatment effects, we define the set of species that received ‘‘substantial’’ funds as the top quartile of fund
recipients. Collectively, these species received 95% of all funds allocated in our sample from 1989 to 1993, a
period which corresponds to the first 4 years in which the FWS was required to conduct an annual accounting
of ‘‘reasonably identifiable’’ expenditures associated with ESA (Appendix A).7

We estimate the average treatment effect on the treated (ATT) by comparing the change in endangerment
scores from 1993 to 2004 between listed and unlisted species using four matching estimators (based on work by
[1,11,30]): (1) nearest-neighbor covariate matching estimator with an inverse variance weighting matrix to
account for the difference in scale of the covariates; (2) nearest-neighbor covariate matching estimator with
Mahalanobis weighting; (3) nearest-neighbor propensity score matching estimator; and (4) kernel (Gaussian)
propensity score matching estimator.8 The nearest-neighbor matching is with replacement and we resolve the
mean-variance tradeoff in the match quality by using four nearest neighbors; the counterfactual outcome is
the average among these four.9 All matching is done across the full vector of control characteristics.

Based on recent work that demonstrates that bootstrapping standard errors is invalid with non-smooth
nearest-neighbor estimators [1], we use Abadie and Imbens’ variance formula [1] for our nearest-neighbor
estimators. We use the robust version of the formula to allow for heteroskedasticity (using four neighbors in
the second-stage matching), which allows the treatment effect to be non-constant (i.e., outcome variance
differs by treatment status and covariates). For the kernel-matching estimator, we bootstrap the standard
errors (using 999 replications).

In our covariate-matching estimators, we use a post-matching bias-correction procedure that asymptotically
removes the conditional bias term in finite samples [2]. For all propensity score estimators, we enforce a
common support. Balancing tests were also conducted for the propensity score estimators.10 In the first two
treatments (listing, high funding), balance was achieved on all covariates. In the third treatment (low funding),
7The expenditure data clearly separate species into a high funding and a low-funding group, and so impact estimates are not sensitive to

local changes in the dollar value or in the percentile used to define the cutoff.
8With the exception of the kernel matching (Stata v.9; [18]), matching was done in Ref. [33].
9This is a standard approach in nearest-neighbor matching [1,23]. We varied the number of neighbors from one to fifteen and the ATT

estimate changes very little. Results available through JEEM’s online archive of supplementary material, which can be accessed at http://

www.aere.org/journal/index.html.
10Available through JEEM’s online archive (see footnote 7).

http://www.aere.org/journal/index.html
http://www.aere.org/journal/index.html
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Table 3

Treatment effect estimates

Average treatment effect on the treated

Listing Listing and high funding

(compared to unlisted)

Listing and low funding

(compared to unlisted)

Nearest-neighbor covariate (inverse

variance)

�0.0191 0.4537*** �0.2128**

(0.839) (0.001) (0.027)

Nearest-neighbor covariate

(Mahalanobis)

�0.0189 0.4091*** �0.1806**

(0.823) (0.001) (0.047)

Nearest-neighbor propensity score �0.1074 0.3355 �0.2307***

(0.161) (0.130) (0.004)

Kernel (Gaussian) propensity score �0.1419* 0.4295** �0.2188**

(0.100) (0.050) (0.050)

# Observations 430 329 396

# Listed species 135 34 101

# Species off common support 18 15 5

P-values in parentheses, *** ¼ 99% confidence, ** ¼ 95%, * ¼ 90%.
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balance was achieved on all covariates except that there is a slightly greater percentage of amphibians among
the unlisted species (6.7% difference; p ¼ 0.09).

Table 3 presents the treatment effect estimates. The estimated treatment effect of listing alone is small,
negative and not statistically different from zero in three of the four specifications (weakly significant using
kernel matching). Among listed species, however, we see sharply differentiated effects across funding status.
Listing a species with high funding increases its NatureServe score by almost a full half point, and the effect is
significantly different from zero in most specifications (not significant using nearest-neighbor propensity score
matching).

As a robustness check on the funding result, we re-do the analysis using the Mahalanobis estimator,
reinterpreting the set of species receiving ‘‘substantial funding’’ as the top third of fund recipients. This cohort
receives 97% of all funds allocated in our sample. The effect of listing, combined with this notion of
substantial funding, remains positive (0.2690) and significantly different from zero (p ¼ 0.006). In contrast,
species that are listed with little or no funding show a decline that, while roughly half as strong in magnitude as
the improvement in well-funded species, is strongly significant.11

5. Robustness checks

5.1. Additional constraints on selecting the counterfactual

Table 4 presents treatment effect estimates using covariate and propensity score matching in combination
with additional constraints placed on the selection of counterfactuals. As an additional form of quality
control, we implement caliper matching in the context of our bias-adjusted, nearest-neighbor Mahalanobis
matching estimator [35]. In the first two rows of Table 4, we use calipers of 3.5 and 3 standard deviations,
meaning that any control unit outside the range of this caliper in the space of the distance metric is dropped
11A natural baseline regression would be to use ordinary least squares regression. However, OLS is problematic because it conflates the

selection and outcome equations, and thus assumes that the determinants and coefficients are the same for these two processes. OLS also

assumes the data generating process is linear in the parameters. Under any non-linearity in the joint selection and outcome equations, these

equations are mis-specified and thus inconsistent. OLS also uses control units for estimating the counterfactual regardless of whether they

are on a common support with treated units (OLS also has difficulty with extreme imbalances in the covariate densities on the common

support). If one runs robust OLS regressions using our vector of controls and including the treatment terms described above as binary

dummies, one will see all treatment effects shifted in the negative direction. Hence listing alone has a significant negative effect, listing

without funding has a significant negative effect, and listing with funding is positively significant only at the 90% level.
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Table 4

Treatment effect estimates with additional constraints on counterfactual selection

Listing Listing and high

funding (compared to

unlisted)

Listing and low funding

(compared to unlisted)

Nearest-neighbor covariate, caliper 3.5a �0.0752 0.3373*** �0.1763**

(0.339) (0.002) (0.052)

Nearest-neighbor covariate, caliper 3 �0.0772 0.2530*** �0.1896**

(0.319) (0.010) (0.034)

Nearest-neighbor covariate, exact taxonomy 0.0045 0.5188*** �0.1573*

(0.960) (0.000) (0.097)

Nearest-neighbor covariate, exact 1993 score �0.0299 0.3087*** �0.1839**

(0.728) (0.004) (0.048)

Nearest-neighbor covariate, exact 1993 score and

taxonomy

�0.0222 0.5265*** �0.2667***

(0.799) (0.000) (0.002)

Nearest-neighbor propensity score, exact

taxonomy

�0.0671 0.1645 �0.1849*

(0.479) (0.384) (0.060)

Nearest-neighbor propensity score, exact 1993

score

�0.0833 0.3355* �0.2500***

(0.282) (0.090) (0.001)

Nearest-neighbor propensity score, exact 1993

score and taxonomy

�0.1079 0.1250 �0.2787***

(0.140) (0.458) (0.001)

P-values in parentheses, *** ¼ 99% confidence, ** ¼ 95%, * ¼ 90%.
aNumber of treated units dropped because no controls were found in the caliper: Caliper 3.5: 4 (listing), 3 (high funding), and 1 (low

funding); Caliper 3.0: 10 (listing), 6 (high funding), and 9 (low funding).
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when the counterfactual mean is calculated.12 Listing alone continues to have negative but insignificant
treatment effects. Listing combined with funding continues to have positive treatment effects; they are lower
but still significantly different from zero. Listing with little or no funding continues to have negative and
significant treatment effects.

Due to concerns raised by ecologists that matching a bird to a reptile, for example, cannot form a credible
counterfactual, we then restrict the match to be exact on taxonomy, and choose the nearest neighbors within
that group using both covariate matching (Mahalanobis) and propensity score matching (nearest-neighbor).
We also restrict the match to be exact on the 1993 NatureServe baseline score, and then on both the 1993 score
and taxonomy.13 None of our qualitative conclusions change.

To address the concern that our control species may simply not be as endangered as listed species despite
having, on average, the same 1993 NatureServe endangerment score, we further restrict the set of species from
which the counterfactual is constructed. In 1980, the FWS began maintaining a list of ‘‘candidate species’’ that
contained all species ‘‘being considered by the Secretary for listing as an endangered or threatened species but
not yet the subject of a proposed rule’’ (50 CFR 424.02). We therefore restrict our set of unlisted species to
those on the 1993 candidate list (categories 1 and 2, 1994 Federal Register). This restriction reduces our set of
potential matches by 152 unlisted species.

Constructing our counterfactual from this reduced set does not change our conclusions. Treatment effect
estimates are presented in Table 5. Most estimators indicate that listing has zero or a weakly negative effect on
recovery, listing with funding has a substantial and significant positive effect on recovery (not significant using
nearest-neighbor propensity score matching), and listing without funding has a substantial and significant
negative effect.
12Reducing the caliper size below 3 standard deviations drops too many observations in our high-funding treatment to be useful. Note,

however, that reducing the caliper successively to 2.5, 2, 1.5 and 1 increases our treatment effect estimates in absolute value in all

treatments (and they are significantly different from zero). Thus, if anything, smaller calipers strengthen our qualitative conclusions.
13For some treated species, an exact match did not exist (particularly when trying to match on both taxonomy and the 1993 score). In

Table 4, we present results from the analysis in which treated units without an exact match are dropped. Keeping them in the analysis does

not change our qualitative conclusions.
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Table 5

Treatment effect estimates with controls restricted to candidate species

Listing Listing and high

funding (compared to

unlisted)

Listing and low funding

(compared to unlisted)

Nearest-neighbor covariate (inverse variance) �0.0664 1.0043*** �0.2314***

(0.471) (0.011) (0.005)

Nearest-neighbor covariate (mahalanobis) �0.0852 0.4686*** �0.2652***

(0.314) (0.005) (0.004)

Nearest-neighbor propensity score �0.1466** 0.3214 �0.1399**

(0.042) (0.205) (0.067)

Kernel (Gaussian) propensity score �0.1602** 0.4157*** �0.1815**

(0.050) (0.001) (0.050)

# Observations 278 177 244

# Listed species 135 34 101

# Species off common support 38 27 24

P-values in parentheses, *** ¼ 99% confidence, ** ¼ 95%, * ¼ 90%.
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5.2. Alternative outcome variable

One concern with the analysis is the accuracy of our outcome variable: changes in NatureServe scores
between 1993 and 2004. Changes in these scores may reflect declines or improvements in a species’ population,
but they also may reflect new information and hence measure scientific interest in a species. We therefore
reanalyzed our data using NatureServe’s ‘‘short-term trend’’ variable, which explicitly avoids attributing
changes in status to new information (see Appendix A). Observations on the trend variable exist for 77% of
our listed species but only 56% of our unlisted species. Thus, one should treat any analysis using this outcome
variable with caution, but we present an analysis because it provides evidence that our results are not likely to
be artifacts of the outcome variable we use.

Treatment effect estimates using this outcome variables are presented in Table 6. Using trend data, the
ESA’s impact is less favorable because many of the unlisted species with missing trend data do poorly in terms
of changes in their NatureServe scores. Our estimate of the effect of listing alone becomes more negative and
significantly different from zero in all estimators. Our estimate of the effect of listing without funding remains
substantially negative and significantly different from zero in all estimators. Unlike the estimated treatment
Table 6

Treatment effect estimates with alternative outcome variable (short-term trend)

Listing Listing and high

funding (compared to

unlisted)

Listing and low funding

(compared to unlisted)

Nearest-neighbor covariate (inverse variance) �0.1855** �0.1734 �0.2302**

(0.042) (0.417) (0.019)

Nearest-neighbor covariate (mahalanobis) �0.1569* 0.0435 �0.2360**

(0.088) (0.796) (0.017)

Nearest-neighbor propensity score �0.3723*** �0.4375* �0.2932**

(0.004) (0.094) (0.023)

Kernel (Gaussian) propensity score �0.3033** �0.3561 �0.2531*

(0.050) (0.250) (0.100)

# Observations 269 193 241

# Listed species 104 28 76

# Species off common support 15 12 7

P-values in parentheses, *** ¼ 99% confidence, ** ¼ 95%, * ¼ 90%.
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effects of listing and listing without funding, however, our estimate of the effect of high funding is unstable
and varies greatly by the matching method and the number of neighbors used.

Further constraints on the selection of the counterfactuals (calipers, exact matching) yields the same
qualitative conclusions.14 We are therefore able to confirm the negative effect of listing without funding using
an alternative outcome variable, but our sample size does not allow us to confirm the positive effect of listing
combined with funding using the same outcome variable.
5.3. Sensitivity tests: Rosenbaum bounds

Given the natural suspicion that some degree of selection bias might remain even after careful matching, we
use Rosenbaum bounds to determine how strongly an unmeasured confounding variable must affect selection
into the treatments in order to undermine our conclusions [8,29]. Although there are other sensitivity tests
available (e.g. [15]), we use Rosenbaum bounds because they are relatively free of parametric assumptions and
because the test provides a single, easily interpretable measure of the way in which unobservables enter.

If the probability of agent j selecting into the treatment is pj, the odds are then pj/(1�pj). The log odds can
be modeled as a generalized function of a vector of controls xj and a linear unobserved term, so log (pj/
(1�pj)) ¼ k(xj)+guj, where uj is an unobserved covariate scaled so that 0pujp1. Take a set of paired
observations where one of each pair was treated and one was not, and identical observable covariates within
pairs. In a randomized experiment or in a study free of bias, g ¼ 0. Thus under the null hypothesis of no
treatment effect, the probability that the treated outcome is higher equals 0.5. The possibility that uj is
correlated with the outcome means that the mean difference between treated and control units may contain
bias.

The odds ratio between unit j which receives the treatment and the matched control outcome k is: pj(1�pk)/
pk(1�pj) ¼ exp {g(uj�uk)}. Because of the bounds on uj, a given value of g constrains the degree to which the
difference between selection probabilities can be a result of hidden bias. Defining G ¼ eg, setting g ¼ 0 and
G ¼ 1 implies that no hidden bias exists, and hence is equivalent to the usual regression assumptions.
Increasing values of G imply an increasingly important role for unobservables in the selection decision. The
differences in outcomes between the treatment and control are calculated and ranked. We contrast outcomes
using matched species from the kernel propensity score-matching estimator from Table 3. A Wilcoxon’s signed
rank statistic is then used to compare the sums of the ranks of the pairs in which the treatment was higher than
the control [12].

The intuitive interpretation of the statistic for different levels of G is that matched species may differ in their
odds of being listed by a factor of G as a result of hidden bias. The higher the level of G to which the difference
remains significantly different from zero, the stronger the relationship is between treatment and differences in
recovery. Note that the assumed unobserved covariate is a strong confounder: one that not only affects
selection but also determines whether the recovery is better for the treatment or the matched control units.

Table 7 presents the results from the Rosenbaum bounds analysis. Because listing has an insignificant
impact even under the null of no unobserved bias, we perform robustness checks only on listing with and
without funding. The first column indicates that, using the sign rank test, the estimated positive treatment
effect of being listed with substantial funding is robust to only moderate levels of unobserved heterogeneity. If
an unobserved covariate caused the odds ratio of listing to differ between listed and unlisted cases by a factor
of 2.5, the 90% confidence interval would include zero. The second column indicates that the estimated
negative treatment effect of being listed without funding remains significantly negative even in the presence of
substantial unobserved bias. The results imply that if an unobserved covariate caused the odds ratio of listing
to differ between listed and unlisted cases by a factor of as much as 5, the 90% confidence interval would still
exclude zero.

We conclude that the negative estimated effects of listing without funding are robust to the presence of
unobserved bias, though the positive effects of listing with funding are less so. However, if selection bias were
to explain our estimates, the bias for listing and funding would have to work in opposite directions. To
14Available through JEEM’s online archive (see footnote 7).
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Table 7

Rosenbaum critical P-values for treatment effects

G Test of the null of zero effect for

Listing and high funding (compared to

unlisted)

Listing and low funding (compared to

unlisted)

1 0.0050 0.0000

1.5 0.0323 0.0000

2 0.0838 0.0000

2.5 0.1498 0.0002

3 0.2216 0.0016

3.5 0.2935 0.0063

4 0.3624 0.0170

4.5 0.4266 0.0361

5 0.4856 0.0649

Table reports P-value for Wilcoxon sign-rank test of significance under hidden bias.
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consider this possibility, we briefly highlight key aspects of the two decision processes underlying our
treatments.

The listing process for the ESA prior to the 1982 FWS guidelines was ill-defined, but the guidelines
restricted the allowable determinants of listing. Doremus [9] states, ‘‘Congressy expressly restricted the scope
of listing decisions, requiring that they be made ‘solely’ on the basis of the best available scientific and
commercial information. This change was made to ‘prevent non-biological considerations from affecting’
listing decisions. The primary ‘non-biological’ considerations at issue were those included in the
administration’s economic impact analyses, that is, the economic costs of protecting species.’’ Thus, the
listing process followed rules that were not explicit but which sought to disallow all ‘‘non-scientific’’
determinants.

Funding decisions from 1989 to 1993, on the other hand, follow a set of guidelines that are explicit and
include economic costs. Congress requires that expenditures on species should vary within an 18-point priority
system formed by considering ‘‘degree of threat,’’ ‘‘recovery potential,’’ ‘‘taxonomy,’’ and ‘‘conflict with
development’’ [4]. Given recovery potential is included in this metric, we should be concerned that some bias
may exist across this selection criterion.

However, others have shown that funding is not correlated with recovery potential [25]. Moreover, one of
the strongest determinants of funding decisions is whether the species is deemed by the FWS to be in conflict
with human activities [24]. Species that are in conflict have substantially higher spending allotted to them. The
conflict variable is more influential than other determinants that, on paper, are assigned greater weight in
determining priority scores for funding decisions. Ceteris paribus, species facing conflict seem less likely to
rebound. Hence the selection bias present in spending decisions may in fact be negative, which would
strengthen our finding of a positive effect from substantial funding. It is thus difficult to tell any simple bias
story that would generate the patterns in these data.

6. Discussion and conclusion

The decision to list or fund a species is contentious, involving complex tradeoffs of scientific, political and
financial concerns. Further, the selection process is affected by observable characteristics of species and the
relative importance of these characteristics has changed over time. After controlling for selection bias through
several different means, we find no evidence that listed species fare any better than their counterfactual
unlisted species on average. In fact, listed species that receive little or no federal and state funding do worse on
average than their counterfactual unlisted species. We do, however, find evidence that the combination of
listing and funding for recovery efforts can be effective in assisting recovery.

One interpretation for these results is that the ESA is not effective, and only money works. However,
because we do not observe any unlisted species that receive high funding, this conclusion cannot be clearly
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drawn from the evidence here. Rather, we find that the ESA works when it is backed up with money, and not
otherwise. Why could this be the case? One plausible explanation for the negative effect of listing alone is that,
because the ESA imposes perverse incentives on private landowners, it causes them to undertake pre-emptive
actions to eliminate listed species from their land (the so-called ‘shoot, shovel, and shut up’ response).15 The
potential penalties for pre-emptive actions are substantial, and so it may be the case that the species-specific
funding creates a sufficient level of perceived monitoring to overcome these perverse incentives. Seen in this
light, it is only the credible potential of enforcement that renders the ESA effective.

Given the significance of expenditures for species recovery, identifying the channels through which spending
achieves its impact becomes a central policy question. Unfortunately the expenditure data are aggregated by
agency and not by use, and only in 1 year (1993) are land expenditures by the FWS split out as a separate
category. However, analysis of these available data can help guide future research. Using the control variables
and an ordered probit model (outcomes: improve, same, worsen), we observe that Forest Service spending has
the strongest positive effect, followed by the Bureau of Land Management and the Fish and Wildlife Service.
State spending appears to have no effect, despite the fact that states spend 38% of the money in the sample.
Indeed, once we split out spending by the three ‘effective’ agencies, cumulative spending by all other agencies
put together has no effect on outcomes whatsoever.16 These results, when combined with our treatment effect
estimates, suggest that more detailed analysis of the channels through which species-specific funds are spent
will be a fruitful path of inquiry for future ESA research.

In terms of policy, the results of our empirical analyses indicate that the rancorous debate over listing more
species under the ESA may be missing the point. Our analysis suggests that it is not the act of listing itself that
matters, but rather high levels of expenditures for recovery combined with listing. Simply listing a species in
the absence of such expenditures appears to lead to a decline.

We recognize that these claims are controversial among conservationists and biologists. One might
reasonably suspect that, despite the large set of covariates used in this analysis, some form of selection bias
remains in our analyses. Indeed, such doubts can never be fully resolved using non-experimental data, which
leads to the question of how we might design testing strategies for the impact of the ESA that are more robust.

Randomization of listing under the ESA is unlikely to ever be politically or legally feasible. Funding
decisions, on the other hand, are much more amenable to experimental methods because such funds will
necessarily be scarce, and so some rationing rule must exist. Instead of funding only the best or the worst
candidates, important research questions could be answered by pairing species ex ante based on their predicted
recovery probabilities, and then randomly choosing one of each pair to receive funding.

Ultimately, designing effective endangered species policy requires policymakers to develop interventions
and collect data with the intention of evaluating the intervention’s effectiveness. The absence of such efforts is
a widespread problem in the field of biodiversity protection [10]. Thus the current debate about the ESA
should be less about dramatic changes to the ESA regulations and more about dramatic changes in the way in
which the ESA is implemented and evaluated in the field.
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Appendix A

A.1. Outcome

The outcome variable is ‘‘change in endangerment status from 1993 to 2004.’’ We choose to begin the period
in 1993 for practical reasons. There are no available pre-1993 objective measures of endangerment status for a
large set of listed and unlisted species of different taxonomic classes.

A.1.1. Short-term trend

Changes in the NatureServe scores between 1993 and 2004 may reflect declines or improvements in a
species’ population, but they also may reflect new information (i.e., new populations of a species are
discovered and thus the species status improves; one species is separated into two species and thus the status of
the species maintaining the original name declines). NatureServe’s ‘‘short-term trend’’ variable explicitly
avoids attributing changes in status to new information and attempts to capture ‘‘the observed, estimated,
inferred, suspected, or projected short-term trend in population size, extent of occurrence, area of occupancy,
number of occurrences (EOs), and/or viability/ecological integrity of occurrences (whichever most
significantly affects the Heritage Conservation Status Rank) within the specified geographic level’’ (quoted
from the metadata file accompanying the data file from NatureServe). This variable consists of four categories
of declining trend (470%, 50–70%, 30–50%, 10–30%), one category for stable (unchanged or within a 10%
fluctuation), one category for increasing trend (410%), and one category for unknown. We code declining as
�1, stable as 0, and improving as 1 (we exclude species with unknown trend).

A.2. Treatments

As is common in analyses of the ESA, we do not distinguish between species listed as ‘‘endangered’’
(in danger of extinction throughout all of a significant portion of its range) or as ‘‘threatened’’ (likely to
become endangered in the foreseeable future). The words ‘‘endangered’’ and ‘‘threatened’’ are not precise
scientific terms with generally accepted biological meaning, and in practice, both categories are afforded the
same protection under the ESA.

A.2.1. Funding

The motivation for considering listing and funding jointly arises from the fact that many listed species get
no more than their names in the Federal Register and a nominal amount of money for recovery efforts. In
most years since 1989, fewer than 10% of the listed species received 90% of the available funds. As with the
listing decision, funding decisions are non-random. For example, species with the highest spending include
many ‘‘charismatic’’ species, such as the red-cockaded woodpecker and the bald eagle. We use FWS annual
accounting of ‘‘reasonably identifiable’’ ESA expenditures compiled in Cash et al. [5] for the years 1989–1993.
The top 25% of funding recipients in our sample received, on average, $10,950,640 from 1989 to 1993. The
bottom 75% of listed species (our ‘‘low funding’’ treatment) received $195,394, on average. The top 33% of
funding recipients received, on average, $8,290,187, whereas the bottom 67% received $120,313. The average
unlisted (control) species received only $293 (only four of the 295 species received funds; an average of
$21,638).

Our analysis, which treats funding as a binary treatment variable, does not require the absolute amount of
money reported by the FWS to be precise (there may indeed be expenses that are not ‘‘reasonably
identifiable’’). It requires only that the rank order by species is accurate and there is no species-specific bias in
reporting absolute expenditures. We observe the sum of federal and state expenditures from a relatively rich
variety of sources over a 5-year period, and use this total to define our ‘‘high-funding’’ treatment. Given the
assumption of homogeneous treatment effects, the marginal impact of funding can properly be thought of as
the impact of moving from the mean of the low-funding treatment ($195,394) to the mean of the high-funding
treatment ($10,950,640), and the magnitude of this impact is the difference in differences of these two
categories relative to the counterfactual; e.g., 0.41�(�0.18) ¼ 0.59, for the nearest-neighbor Mahalanobis
covariate estimator. Alternatively, the marginal effect of listing a species and increasing expenditures from the
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mean expenditure among unlisted species ($293) to the mean expenditure for the top funded species is 0.41.
Because we do not observe funding data for every year during our sample and nor do we observe the universe
of possible funding sources, total expenditures on species recovery are higher than what we observe. Hence our
marginal effects should not be thought of as the impact of shifting total expenditures over the entire interval of
the study from all sources, but rather the impact of shifting the federal and state expenditures over a 5-year
period which lies at the beginning of the study period. To the extent that non-governmental expenditures (and
government expenditures over time) co-move with governmental expenditures in our sample, these marginal
effects are correct. Because private and foundation expenditures on recovery are not variables under the direct
control of policymakers, we believe that the impact of government expenditure on recovery probabilities is the
most policy-relevant.

A.3. Covariates

For summary statistics of the covariates, see Table A1.

A.3.1. Taxonomy and size

We include: taxonomic class (bird, amphibian, mammal, fish, and reptile), which captures human affinity
for species that are more closely related to humans and important biological characteristics such as
reproductive capacity and habitat requirements; length, which, along with taxonomic class, is a proxy for
‘‘charismatic megafauna’’ as well as capturing important biological characteristics such as metabolism and
habitat requirements; and taxonomic distinctiveness (monotypic or from a small genus with 2–5 species),
which captures the species value-added to biodiversity. These covariates plausibly affect listing and recovery
[24]. We obtain these measures from NatureServe’s Explorer database.

A.4. Endangerment status

A species’ level of endangerment affects its probability of listing as well as its probability of recovering. To
measure endangerment status, we use national endangerment scores from NatureServe, which tracks all native
vertebrates in the United States (also used by Metrick and Weitzman [24]). Based on the Natural Heritage
Methodology, NatureServe’s system assigns an endangerment score to each species on a scale of 0 (extinct) to
5 (least endangered). The NatureServe scoring system is the most comprehensive measure of species
endangerment for the set of listed and unlisted vertebrates. Each of the scores has a well-defined meaning and
Table A1

Sample summary statistics for listed and unlisted species

Variable Listed species Unlisted species

Mean (SD) (Min, Max) Mean (SD) (Min, Max)

Mammal 0.08 (0.27) 0, 1 0.09 (0.29) 0, 1

Bird 0.27 (0.45) 0, 1 0.09 (0.28) 0, 1

Reptile 0.10 (0.30) 0, 1 0.09 (0.28) 0, 1

Amphibian 0.06 (0.24) 0, 1 0.18 (0.38) 0, 1

Fish 0.49 (0.50) 0, 1 0.55 (0.50) 0, 1

Small genus 0.22 (0.42) 0, 1 0.14 (0.35) 0, 1

Monotype genus 0.11 (0.32) 0, 1 0.06 (0.23) 0, 1

Length 2.76 (1.09) 1.1, 6.13 2.55 (0.82) 0.69, 5.06

1993 Score 1.56 (0.71) 1, 3.5 2.51 (0.74) 1, 3.5

Pro-env house 7.96 (18.20) 0.04, 111.2 6.38 (9.29) 0, 58.37

Pro-land house 11.29 (18.85) 0, 114.08 9.94 (10.06) 0, 86.96

House LCV score 42.44 (13.80) 22.96, 67.42 39.85 (12.37) 12.62, 80.83

Senate LCV score 40.76 (14.87) 14.37, 71.42 41.07 (15.82) 14.37, 90.12

Citations 0.69 (1.65) 0, 12.92 0.21 (0.42) 0, 4.75
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a serious effort is made to apply the scores consistently. A score of 1 implies that the species is ‘‘critically
imperiled’’ in its range, having fewer than 6 occurrences in the world, or fewer than 1000 individuals. A score
of 2 implies that the species is ‘‘imperiled’’ in its range, having between 6 and 20 occurrences, or fewer than
3000 individuals. A score of 3 implies the species is ‘‘vulnerable’’ in range, have fewer than 100 occurrences, or
fewer than 10,000 individuals. A score of 4 implies the species is ‘‘apparently secure’’ throughout range (but
possibly rare in parts of its range). A score of 5 implies the species is ‘‘demonstrably secure’’ throughout range
(however, it may be rare in certain areas). When a species falls between two scores, we give it an average value
(e.g., 2/3 implies 2.5). For species that are reported to exist but lack persuasive documentation, or species that
have not been observed in some time but have the potential to exist, we assign a score of 0.5. As noted by
Metrick and Weitzman [24], the NatureServe system is similar to the ‘‘degree of threat’’ measure in the FWS’s
priority scoring system. However, unlike NatureServe, the FWS has not published specific standards to
explain why different species are assigned different degrees of threat. We include only species that were
‘‘endangered’’ in 1993: those with scores between 1 and 3.5. We remove species with scores of 0 or 0.5 because
it would be difficult for such species to show any change between 1993 and 2004. Not all vertebrates received
scores in 1993 and thus this variable is the limiting variable in our data set.

A.4.1. Science

The FWS claims to base listing decisions on available scientific evidence. If the science does not warrant
listing (either because the science indicates the species is not imperiled or because sufficient data are lacking),
the FWS will not propose a species for listing in the Federal Register. Relying on scientific information has
been, to different degrees, an important part of the ESA from its inception [9]. Scientific information can affect
listing decisions through its direct effect on the FWS, but also indirectly through conversations that the FWS
has with scientists who might be interested in seeing ‘‘their’’ species listed [9]. Obviously scientific information
will also influence the success of a species recovery: the more well understood the species, the more likely the
species can be successfully recovered.

We use the annual number of journal articles as a measure of scientific influence on the listing and recovery
processes. The number of such articles is not a perfect measure of scientific (and scientist) influence on the
processes of listing and recovery. However, although the FWS is allowed to consult unpublished reports and
first-hand observations, it tends to be reluctant to do so [9]. For every species in our database, we used BIOSIS
Previews to record the annual number of citations to that species from 1969 to 1993. In our analysis, we use
the average annual citations to a species as a measure of scientific influence.

A.4.2. Politics

Interference in the listing and recovery process by federal legislators is commonly assumed, although with
the exception of one published article on the listing process [3], data for such interference are lacking. Pro-
environment politicians may be more active in seeking, or less active in preventing, the listing of species in
their states. Pro-environment politicians may also reflect pro-environmental preferences of their constituents
which may make the FWS more inclined to list a species from the state (because there will be less resistance) or
less inclined to list the species (because the citizens and politicians have or will take action themselves and the
species is less likely to need federal protection). Opposite effects would stem from pressure by pro-land-use
politicians and their constituents. Clearly, political influence can affect not only listing, but species recovery as
well.

To measure the environmental preferences of federal legislators, we follow Ando [3] and use League of
Conservation Voter (LCV) scores for every House and Senate delegation back to 1971, the first year the
League published their scorecard. These data were derived from on-line and hard copy content from the
League. We construct two measures of environmental preferences. (A) For both the Senate and House
delegations, we estimate the average annual LCV score between 1971 and 1993 (House LCV score; Senate

LCV score). When a species is found in more than one state, we take an average of the annual scores across
states (we do not have precise data on the proportions of a species’ habitat in each state, and thus weigh each
state equally). (B) Every Senate delegation has two members, but the number of members of each House
delegation varies by the size of the state. Presumably the total numbers of pro-environment and pro-land-use
House representatives (Pro-Env House, Pro-Land House) can matter in listing and recovery outcomes. Using
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Ando’s [3] score cutoffs for designating a representative as ‘‘pro-environment’’ (score475) or ‘‘pro-land-use’’
(scoreo25), we estimate the average annual number of pro-environment and pro-land-use congressional
representatives that have influence over a given species’ habitat.

We also collected data on citizen environmental preferences (proxied by the number of citizens of each state
that recreationally observe wildlife in a non-hunting context according to FWS surveys) on Federal and State
land ownership by state (from http://www.nrcm.org/documents/publiclandownership.pdf), and on the
comprehensiveness of state Endangered Species laws (from http://www.defenders.org/pubs/sesa01.html).
However, we find that these variables are not important in any of our selection models and we exclude them in
the analysis (citizen preferences are only important when variables for politician preferences are excluded).
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